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Abstr_c.*

We describethe Stanford Temporal Prover (STEP), a system being developed to

support the computer-aided formal verificationofconcurrentand reactivesystems

based on temporal specifications.Unlikesystems ba_ed on model-checking,STeP

isnot restrictedtofinite-statesystems. Itcombines mode/cAse/ringand deductive

rn_tho_ to ¢llow the verificationof R broa_ cl_s ofsystems, includingprogrRms

with infinitedata domains, N-,_roce_sfrograms, and N-component circuitdesigns,

forarbitr_.ryN. In short,STeP has been designed with the objectiveofcombining

the expressivenessofdeductivemethods with the simplicityof model checking.

The verificat,ioR processLsfor the most part automatic. User interactionoc.

curs mostly atthe highest,most inluitivelevel,primarilythrough a graphicalproof

languageof veri_cationdiagrams. Efficientsimplificationmethods, decisionproce-

dures,_md invarlantgenerationtechniquesare then invokedautomaticallyto prove

resultingfirst,orderverificationconditionswith minimal assistance.

We describethe performanceofthesystem when appliedtoseveralexamples, ]n-

cludlngthe N-proc_ diningphilosopher'sprogram, Szymanski'sN-process mutual

exclusionalgorithm,and a d_tributed N-w_y arbitercircuit.

"This research wiresupporttc' in p_rt by"the National Science Foundation under @'ant CCR.92.
2322_. by the D0f_nse Advznced rt_earch Projects Agency uncl:r contract NAG2-892. m'_d,by the
Ummd _t&tesAirForceOfficeofScientificResc&chundercotltractF49620-.q3-1.0139.
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I Introduction

The Stanford Temporal Prover, STEP, is being developed to supper; the computer-

aided formal verification of concurrent and reactive systems based on temporal spec.

i£cations. Unlike most systems for temporal verification, STeP is not restricted to

finite-state systems: but combines model checking with deductive methods to allow

the verification of a broad class of systems, including paramererized (A'-component)

circui_ designs, parameterized (?;-process) programs, and programs with in_n_te

dat_ domains. STeP was briefly introduced in [Man94].

A veri:fication system which combines model checking and deductive methods

offers a number of advantages ever purely model checking or purely deductive ap-
p_aches. Such a system should:

• Reduce the complexity of the verification task by

- Decomposition

Each component may be verified by the most suitable veri_cation method. For

insta.nce, this would allow a model checker to verify an ind_wdusl compon:nt

even if. it could not "verify, because of _he _tate explosion problem, the entire
system.

• Allow veriflcationof a brosderclassofsystems:

- Parameterizedprograms

- Parameterizedcircuits

- Systems with infinitedata domains

• Automate the verificationtask:

- Automatic generatloP,ofinvarlants

- Effectivesimplifications

- Model checking

- Decisionprocedures

- Verlflc_tion rules

• Allow visualinteraction:

- Verification diagrams

• Provide debuting tools:

- Counter-examples

- Debug;sing guidance



In short, STeP ha_ been designed with the objective:

To combine the expressiveness of deductive methods with the simplicity

of model checking.

Our development efforts have been focused, in particular, on the following area_.
First, in addition to the textual language of temporal logic, the system supports

a stru.ctured visual language of verification diorama [MP94a] for guiding, organiz-

ing, and displaying proofs. Verification diagrams allow the user to cons'cruet proofs

hierarchically, starting from a high-level, intuitive proof sketch and proceeding in-
crementally, as necessary, through l_vers of greater detail.

Second, the system implements powerful techniques for automatic invar/o.nt gen*

station. Deductive verification in the temporal framework almost always relies on

finding, for a given program and specification, suitably strong (inductive) invari-
ants and intermediate a_ertions. The user can typically provide an irLtuitive, kigh-

level invari_t, from which the system derives stronger, more detaUed, top.down

invarian_. Simultaneously, bottom.up invariants are generated automatically by

analyzing the program _e_. By combining these two methods, the system can of-

ten deduce sufficiently deta'ded invariants to carry through the entlre veri_c_tion

process.
Finally, the system provides an integrated suite of simplifications and decision

procedures for automatically checking the validity of a large cla48 of first-order and

temporal formulav. ThL_ degree of autombted deduction i_ sufficient to handle most
of the verification conditions that arise during the course of deductive veritication_

a,_d the few conditions that arenot solved automatically typica!Jy correspond to the
critical s_eps of manually constructed proofs, where the u_er is most able to provide

guidance.

The remainder of t_ _ction provides a brief overview of the sys:em _nd its

components. Section 2 provides a concrete description of how the system can be
used, by showing how several properti_ of Peterson's mutual exclusion algorithm

are verified. Various _pects of the system are described in greater detail in _he

subsequent _ec_ions, inctuding the model checker, w"ification rules and verifi_:_:.',on

diagrams, automatic inv_riant generation, and thec-.,_.,._-proving support for estab-
lishing verification conditions. FinaJly_ Section 6 presents some more sub_tantlal

examples: the N-proce_ dining philosopher's program, Szymanski's N-process mu-

tual exclusion _lgorithm, and a distributed N-way arbiter circuit.

1.1 Preliminaries

A reactive #ystem [progr_m) is a _y_tem that maintains an ongoing interaction w!th
its environment. Examples of reactive systems are concurrent and distributed pro-

grams, embedded systems, and communication networks. A reactive system must
be specified by its behavior over time, rep_ented _ sequences of states, i.e, corn.

putations. The spec_ficatlon of a reactive system may be given a.s a formula of



linear.time first.order temporal logic, a language which combines first-order formu-

[_ with _empora] operators for describing state sequences. For instance, given a

program P,

sta_ that, in every computation of _v every state satisfying z -- 0 is eventually
followed by a state satis_,ing P - 0. A temporal formula _p is _.vaiid if _v _ _p, i.e.,

holds over all computations of _. A state (first-order) formula 1 _ is 7_.state valid

if _ 1=-1 _. i.e., _ holds in all sta_,s of all computations of 7>. Our goal is to show

the _-validity of a given temporal specification _ for a reactive system 7_.

Our. computational model'for reactive systems, based on [MP91b], is that of

(.fair) transition systems. A fair transition system consistsof an initial condition, a
set of transitions, i.e., negt-state relations, and a fairness requirement. Fair transi-

tion systemscan be used todefinethe semanticsofa simpleprogramming language

SPL which includesconstructsforconcurrency.,nondeterministicselection,and p_-

rameterizedstatements.For instance,

N

II S[il
i=]

where the s_me process S is executed N times in par_]e], is a typical parameterized

statement, with parameter N. A program containing a parametefized statement is

a paramete_=ed pr_r=m.

The remainder of this paper assumes that the reader is familiar with the fair

transitionmodel, SPL, and the language oftemporal logic.For an in-depthtreat-

ment of thesetopics,see [MPgl b].

1.2 System Overview

Figure i presentss high-leveloverview ofthe STeP system. A briefdescriptionof

each component follows.

Input The basic input to STeP is an SPL program 7) and a temporal logic formula

which expresses the property of T_ to be verified. The SPL program is modeled a.s
a fairtransitionsystem $. Even though SPL can be used to describeboth software

and hardware systerr3,STeP isnot restrictedto SPL, and can be used to verify

any system that can be modeled asa fairtransitionsystem,

Vet|float|on DLmgrams The preferred approach to constructing a proof is throu$h

verification diagrarr_. Through a graphical user interface, the user can draw a di-

agram that repr_ents the proof ofa givenformula _ (seeSection2.1).The corre-

sponding verification conditions are generat¢<l _tutomatically from the verification
diagram bad are checked by the automatic prover.

aWe refer to flts',-or4cr form_s as state form_as or _nion_.



Figure 1: An overview of the STeP system
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Model Checking The model checl_er takes as input the fair transition system S

and the (simplified)formula_. Ittriestoshow that _ isvalidfor S by searching

fora counterexample in the form.ofa computation satisfying"_9 (seeSection3).

For finite-statesystems, the algorithmguarantees termination(up to space/time

limitations)with a positiveanswer or counterexample. The model-checker may

also be appliedto infinite-state_systems; terminMion with a positiveanswer o._

counterexample isnot guaranteed inthiscase.

Automatic Prover This isthe main module of the deductive component of

STEP, and comprises four distinctsubcomponents that interactwith e_ch other

inthe cou me of a proof:

Verificationrule8are used to reduce the proofof _-validity of a temporal

formula 9 to the proofof validityofa set offirst-orderformulas,calledt,eri.

ficatior_ con&;tion,.

• Bottom.up int_risn_s,generated _, static analysisofthe transition system

sad the program text,are used to simplifyverificationconditions.

The first-orderprover(subsections5.1-5.3)isresponsibleforsimplifyingver-

ificationconditionsand proving theirvalidityifpossible.This isdone with

a combination of (contextual)rewritingtechniques,decisionprocedures,and

generaltheorem proving. This provercan Mso use previouslyproven invari-
ants.

A number of automatic techniques,includingin_riance strengtheningand

propagation,are availableifthe first-orderproverisunable to prove allver-

ificationconditions.These techniquesare primaxilyintended to strengthen

inv_rianm that are not inductiveand to generateintermediateassertions.

Interactive P,-over Ifthe automatic prover is not able to prove a verification

condition,the usercan chooset_ 81rethe simplifiedbut unproven verificationcon-

ditionto the interaA:tiv;prover,where, ifitisindeedvalid,itcan be proved with

some u_er guidance (seesubsection5.4}.

Ifthe formula isnot _lid,the usermay be ableto receivesome suggestionson

why itisn t valid This informationcan then be used to modify the program or

stren_,t..henan |n.tetmediateassertionor inwriant.Note that the a_ilabilityofthe

model ¢l,eckerallow6the usertosearchfora counterexample while_imultaneously

attempting an interactiveproof.

The inte,actlveproveralsofeaturesdeduction rulesfortemporal logic thatcan

be used to simplifyand prove temporal formula_,



1.8 Implementation

STeP iswritteninStandardML ofNew Jerseywiththeexceptionof themodel

checker,whichisimplementedinC.

A prototypeX-windowsversionofthegraphicaluserinterfaceisbeingdeveloped

usingtheeXene libraryforConcurrentML.
Currently,aftersixmonthsofimplementation,thesizeofthe sourcecode is

approximately40,000lines.

2 Overview: A Simple Example

This_c_iondescribeshow"STeP c_n be appliedto the deductiveverificationof

Petemon'smutualexclusionalgorithm,asimplementedby programP_T ofFigure2.

Infact,sinceprogramPSi"isfinite-state,eachofthe propertiesprovedbelowcan

alsobe verifiedautomaticallyusingtheSTeP modelchecker.

local

PI::

•-P2 ::

_/_,_/_ :boolean where y_ = P,//2 = F
: integer where s = 1

_: loop forever do

e2: l/_ :----T

e3: 8:ffil
£4: await "_Y2V a---
£5: critical

: yz:fF

"m0: loop forever do

m2:Y2 :: T

: await "Yl V

/16 _2 :---- F

s=l

Figure2:Program pz'r(Peterson'salgorithmformutual exclusion).

In program pE'r, _he buic mechanism protecting access to the critical sections
(represented by statements £e and ms), is provided by the boolean variables Yt and
Y2.Each processP,.,forim I,2,thatisinterestedinenteringitscriticalsectionsets

itsj/,variabletoT. On exitingthecriticalsection,thecorrespondingyiisre_tto

-- ill I I I
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The problem with thls approach is that the two processes may arrive at their

waitingpositions,,04and m4 respectively,,at about the same time,with both Yl =

Y2 -'-T. Ifthe only criterionforentryto the criticalsectionwas that the _/iofthe

competitorbe F, thissituationwould resultin a deadlock (tie).

The variable8 isinwnded forbreakingsuch ties.Itmay be viewedasa signature,

inthe sensethat each processthatsetsits//ivariabieto T alsowritesRs identity

number in s at the next step taken by the process.Then. ifboth processesare at

the waitingposition,the firsttoenterwillbe Pi such that s_ i.For i - 1,2,let

T denote the index of the other process. The factthat s ._ i impliesthat s --T;-

which means that the competitorPr was the/oatto assigna valueto _. Therefore

Pi should have priority.

We fimtintroduceour graphic_lprooflanguage ofverificationdiagrams,and we

then illustratethedeductiveveri_cationofa few propertiesofprogram PET. Details

about our specificationlanguagecan be found in[MPglb I.The deductiveme_hods

used are discussedin more detailin [MP91a] and [M.P94b]..A more ext..ensive

explanationof verificationdiagrams isgivenin [MP94a].

2.1 Verification Diagrams

]nproofsofprope_iesofreactivesystems,itistypicallynecessarytoconsiderseveral

assertions(stateformulas)atthe same time and todetermine which transitionslead

from one azserti.onto another. A verificationcondition{_}_'{_} isan assertion

statingthat, whenever _ istaken from a statesatisfyingq, the resultingstate

must satisfy_. Itisconvenient_ visualizezhese conditionswith a diagram that

summarizes the assertionsunder considerationand the possibletransitionsbetween
them,

A _ri._cation diagram [MP94a] isa directedlabeledgraph where:

• ,Vodeeinthe graph arelabeledby assertions.We willoften referto the node

by.the _msertionlabelingit.

• Edge# in the graph representtransitionsbetween assertions.Each edge con-

nectsone assertion nother and islabeledby the name of a transitionin

the program. We re.,._oan edge labeledby r as a r-edge.

• One of the nodes may be designatedas a terminal node ("goal"node). In

the graphicalrepresentation,thisnode isdistinguishedby having a boldf_e

bou_idary.No edges departfrom a terminalnode.

Verificationdiagrams providea conciserepresentationof setsof verificationcon-

ditionsas follows. For a nonterminal node (labeled b.v) _o and transition r. let

_ol, .... _ be the nodes reached by 1"-edges departing from _o. We say that _oI..... _k

arethe r._ucces_orsof_. The vcri,flcationconditionaaeocfa_d t_th_ and _"isgiven
bv: ....



Inotherwords_ thereisan implicit_'-edgeconnecting_ to itself.No_e thst forthe

casek = O,i.e.,no T-edgesdepartfrom 9_,the verificationconditiona.ssociat_with

and "ris given _':

No verificationconditionsare a_sociatedwith terminalnodes.

Since a diagram providesa succinctrepresentationof s largesetof verification

conditions,itcan often presenta usefuland illuminatingoverview of a complex

proof.

A diagram is valid over program 7_ (P.valid) if allthe verification conditions

associatedwith nodes of the diagram are7>-statevalid.

2.2 Proving Invm'iance

The mutual exclusionpropertyforprogram PET isexpressedby the followingsafety

[ormut_:
_Mr: D-,(ntd5 A at.ms).

where otd5 and at.ms are predicates stating that comrol is at statements t_ and

ms, respectively.

Rule INV

Using deductive methods, the following verificstion rule, rule INV, can be used to

prove _hat the stateformula p isinv_riantirtevery computation of _ program 7>,
where 0 is the initial condition and 7" is the set of transitions of the tra.nsitlon

system correspondingto 7):

INV For strengtheningmssertion_r:

$I. O--+ _o

s2. 7"
$3. _o-+p

r_p

The rulestst_ that in order to establishthe 7>-vaJidityof the temporal formula

DP, itsufficestofindan nat,err.ion_o,s_rengfl_eningp,such thP._premisesSI--$3are

P-statevalid.Premise Sl statesthat the initialconditk,._O implies_,.Premise $2

states that the verification c_ndition {_) _- {_) holds for each transition r E 7", i.e.,

if I- is taken from any state satisfying _, the result is a stat_ also satisfying _. If

premises$I and $2 hold for_, then _ iscMied an inductiveassertion;by induction,

holdsineverystateofa computation. By premiseS3, igfollowsr,ha_ p alsoholds

inevery sta_eofa computation.



Note that allthe premisesofrule%E'Varestateformulas,whereasthe conclusion

isa reap.oralformula. This istypicalofthe deductivemethodology,which applies

verificationrulestoreducethe proofoftempora] formulasto the proofoffirst-order

conditions.

PET" Mutual Exclusion

To prove mutual exclusionforprogram PET, p istaken to be:

p: "_(at-_ŝ at.ms).

In thisexample, a.sisoffer,the case,verificationrequiresidentifyinga suitable

strengthenln8 assertion_. To assistinthistask,STeP providesbuilt-inmechanisms

forautomaticallygeneratinglow-levelinvariantsand automaticallystrengthening

proposed invariantssuggestedby"the user.

Low-levelinvariants(alsotailed"botsom-up invariants')are guaranteed to be

invaxiantsby the way they are generated,so they can be used inestablishingthe

premisesof the above verificationrule.The followingautomaticallygenerated in-

variantsam necessetryfores'_ablishingmutual exclusionforprogram PET:

X]: at -_a..a _ Y:

X_: at.m3..s --) P2

Strengthened inv_riants(alsocalled"top-<iowninv_riants")are obtained _'

weakest preconditionpropagation. Consider, for instance,statement _4. Ifthe

corresponding transitionv_ isnever to violatemutual exclusion,itmust be the

case that "Y2 v s = 2 isfalsewhenever controlisat£4 and ms. ATtersimplifying

with respectto X2, thisyieldsthe followingstrengthenedinvaxiant:

@z: at.£4 A at-ms _ -_(s= 2).

Similarly:

_9: alJ.m A at.m4 _ "_(s----I).

Thus, forthise);ample,the proofofmutual exclusionisentirelyautomatic.First,

STeP identifiesthe specificationas a safetyproperty and invokesruleZ_IV.Since

p isnot inductive,the proof does not succeed. Therefore,bottom-up invariant=,

includingXz and ):2,are generated. The system again attempts to establishthe

invaxi_nceofp,and indoing so,generatesthe strengthenedinvariant_p:

_: pA _z A _2.

Finally,STeP isable to prove each of the premisesof ruleINV.

More typlcally_however, the user must provide<lirectionto the system by sup

gestinga strengtheniz_gassertion_. Even if_ isnot immediately inductive,the

system can apply invariantstrengtheningheuristicsto complete the proof.

lnvafiant generation and strengthening methods are discussed more fully in Sec.
tion4.



2.3 Proving Precedence

The property of 1-bounded overtaking for process Pl of program PeT may be ex-
pressed by the following "nested waiting-for formula,': where the wait-for ("weak
until") operator W is right associative:

In other words, once process P1 has reached statement _4. _.rocess Pz may enter its
critical section m5 at most once before Px enters its critical section.

Rule WAIT

The following verification rule, rule WAIT, may be used to establish nested waiting-
for formulas for a program _>:

WaIT For intermediate assertions _n, .... _c :
¢l

W1. P"+ V_J

i

W2. {¢i] "T' { V _j) for i-- 1, .... n
/=o

W3. ¢i-+qi for iffi 0,...,n
P _¢ qn Wqn-l'"qt W_o

This rule stat_a that to establish the _-va_idity of th_ nested-for formula, it
suffices to find intermediate assertions _on,..., _o such that premises WI-W3 are
P-state valid. Premise W1 states that every _t_te satisfying p also satisfies some _oi,
for some intermediate a_sertion ¢i. By premise W2, every _i-state. for i ffi 1, .... n.

is followed by a _j-state, for j -- 0..... i. It follows that

holds for every computation of _>, and by mo._-._onicity, premise W3 establishes the
desired result.

Wait-for Diagram

We can visualize the proof with a verification diagr,.m, in particular a wait-for
diagram. A wait-for dia_am is a weakly acyclic verification diagram with nodes
¢_ .... , _#o,where too is a te:minal node, satisfying the following requirement: when-
ever node _i is connected by an edge to r.>de Cj, then i _>j. _O-valid wait-for dia-
grams can be used to establish the P-validity of ne._t_t wait-for formula_, as stated
by the following claim:

Claim 1 (WAIT-FOR) A 7_.t:alid wait.for diagram establishes _hat the formula

10
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m

jffiO

is _.valid.

If. in addition, we can e,_ablish the _.stuce validity of the following implications:

m

P _ V % and _i -_ qi for i-O ..... m
j=O

then we toe can conclude the P.validity of:

PET: 1-Bounded Overtaking

The following intermediate assertions can be used to establish 1-bounded overtaking
for program P_T:

_q3 : at.£4 A at.m4 A s = I
,P2: at._4 A at._s

_1: at-_4 /', (at.moa._ V (at.m4 ^ s = 2))
¢o : at.£5

The wait-for diagram of ¢_ f._: program PET ie given in Figure 3. It presents
useful information that ia not found in the straightforward listing of _a. Ca, _1, and
¢0 above. For instance, c_nsider premise W2 with respect to Ca and transition rm,,

stating that:

if era4 is taken from a state satisfying _a, then the re_ulting state mast
satisfy ¢3 V ¢2 V ¢! V 9¢0.

However, in the verification diagram of Figure 3, there is a single arrow labeled va4
depart;.ng from _, indicating that

if rr,4 is taken from a state satisfying _3. then the resulting state must
satisfy ¢0 v ¢2,

yielding the more precise, verification condition:

As another example, premise W2 with respect to _a and lransition _'_ yields
the verification condition:

11



_ ot.rr¢ 4 A $ = 1)

ra+ -

_2: o,.l, ^ at.m_

I,,.,+
<,+.t4/_(a+.mo..3,eV (a+-m4 A $ = 2)))

Figure3: _erific_,tiondia_am for l-_ounded overtaking.

whereas the veriflcat_o_diagram yields:

Both conditionscan be establishedautomatically,since_3 and the bottom-up in-

v_trlant _2:at-m3..s--_p2 imply that 1"_ cannot be _aken from a _a-st_te, but the
stronger condition can be verified more e_c|ently. For more complicated proofs,

thise_Iciencyisan important advantage. Furthermore, thisgain isobtained at

almost no c_st_sinceitisinany caseintuitivefor_he usertoconnect _o3to _o_by

only the singlearrow rod.

In thisca_e,for n ---3 and the number of transitionsI"17-- 16, premise W2

yields18 verific_ttionconditions.Once the usersuppliesthe intermediateassertions

_¢0....,_, eithertextuallyor graphically,all48 verificationconditionsare proved

automatically,as well a_ premises W1 and W3. Again, _s pointedout above, the

automaticallygenerated bottom-up {nvariantsare used fortheseproofs.

2.4 Provivg Response

The l-bounded overtakingproperty forprogram PET does not st&rethatPI _sguar-

anteedeventua|accesstoit_czqticMsection.The _cce_sibilltypropertyi_expressed

as the follo_,ing reapor_e formula:

12
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Rule CHAIN

The following verification rule, rule CHAI.N, can be use_ to prove simple response

formulaslike4R, i.e.,formulas of the form

P ffi_ O q

where p and q are state formulas.

CHAIN For.intermediate asser'_ions _,, .... ,s:l and

helpful transitions T., .... rl :
n

RI. p--,qv V4J
j=l

{ ,}'r{qvV4 fori--1 .....
__<_

Rz. {4,} v V for i = 1, ....

R4. _,_ En (_'_) for i= i.....n
p f_ <> q

The rule states _hat to establish the _'-validity of response formulas of the above

form_ it suffices to identify a sequence of intermediate a.._ertiop.s _o, ..... ¢1, and a

set of just transitions _',,..., rl such that the premises R1-R4 are _-state valid.

Premise R1 stat_ tha_ p implies q (in which case the proof is finished) or one of
the intermediate as.sertions _. Premise R2 requires that taking any transition from

a _/-position results in a next position satisfyin_ _/, for some j < i. Premise R3
requires that taking: the just {"helpful") transition _'i from a 4;-position resul_ in a

next po6ition which satisfies _j for j < i. Premise R4 claims that the just transition
r_ is enabled at every 9o_-posStion.

Response Diagram

Like a proof of precedence properties, we can visualize the proof of such response

properties with a verification diagram, in this case _ response diagram. A respor_se
diagram hs a verification di_ram with nodes 4, ..... 40: and two kind6 of edges

(distinguished by single and double lines) that satisfies the following r_luiremen_s:

• Ifa singleedge connec1_node _i to node 4#,then i>_j.

* Ifa double edge conners node q_ to node _/, then i > j.

• Every node 4i, i > O, has a double edge dep_rting from it. This identitles

the t, ransition labeling such an edge _m helpful for a._ertion _,. All helpful
transitions must be just.

_3



• No transition can ]abe] both a single and a double edge departing from the
same node.

m _o is a terminal node.

The first two requirements ensure that the diagram is weakly" acycllc, i.e., whenever

node _i is connected by an edge (single or doublel to node _j, j _< i. The stronger

second requirement ensures that the subgraph ba_d on the double edges is acyclic,

forbidding self-connections by double edges. The third requirement demands that

every nonterminal _ertion (i.e., _,' for i > O) has at least one helpful transition
a_sociated with it.

The verification condition associated wit_, _ and ," for the c_ that. r labels only

single edges from 9 is as defined in Section 2.1. If _"labels any double edges from 9,

where 9_ .... ,9k, k > O. are the r-sucee_om of 9, then the veritteation condition

ar_ocisted with _ and *" is as follows:

{9} v ... v

Transition I', identified as helpful, is required to lead _way from _. Thi,, with the

requirement of aeyclicity, implies that when thts transition is taken from a 9-state,

the computation gets closer to the goal 9o.
Furthermore if 1" labek a double edge dep_rting from _, we require:

9 -* (,)

Thbt is, s transition helpful for _ is enabled on all _-st_tes. We refer to this

requirement as the enabling equipment.

A response diagram k s_d to be valid over p_mm 1_ (l_.valid) if all the verifi-
catio_ conditions and enabling requirements are _v-state valid for every nonterminEd

node _i, i > O, and every _raneition 1-.
The consequences of having a _-_altd responw diagram are stated in the follow-

ing claim.

Claim 2 (RESPONSE) A 7_-t, alid re,ponae diagram establishes Lhat the _sponse
/omuta

r_

V
,m,O

is _-_iid.

[/, in addition, we can establish the _._tate vc, lidity of the follow,n9 implic_tion_:
_t

P _ V _._ and _o -e q

_hen we can conclude the7>.validlty of:

P _* Oq

14
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_t --_4

at-too..2 A ,s --- |
i

___ _ I'R2

C_,2.ro,.,_̂ ,--,,_"
_"13

Figure 4: Verification diasram for accessi_>ilhy.
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PET"Accessibility

Figure4presen_the response diagram establishing _R. The diagram is hierarchical.

In partlcular, the nodes labeled _e. _s, and _4 are contained in the compound node
labeled s - 1, which itself is contained with _odes _, _2, and _1 in the compound

node labeled a_-_4. These encapsulations were inspired by Sta_echarts [Har87]. A

hierarchical dish,ram may b_ interpreted as follows:

• The labelofa compound node isimplicitlya conjunctinthe labelofeach of

its subnodes.

• Each arrow from a compound node represents an arrow from each of its suk_

nodes,with the same labeland destinationnode.

• Each arrow to a compound node representsan arrow to each ofitssubnodes,

with the same labeland sourcenode.

Thus, the diagram in Figure 4 may be presentedexplicitlyby"adding an arrow

labeledes from _7 to each node see,...,_¢i(deletingthe originalarrow from Soy),

adding s -- 1 as a conjunct in the labelof each node _,..., S04 (deletingthe

compound node labs.leds --I),and adding at._4as a conjunctin the labelofeach

node _s ..... _l (deleting the compound node labeled at._4).

The 1:esultingdiagram satisfiesthe requirementsofthe responsedlagrsm, i.e.,it

isacyclic,ithas _ goal node _o (with no departingarrows),and thereisa double

arrow from each node, excludingthe goal node, along a path to the goa_ node.

Each double aarow representsa claim of single-stepprogress. For instance,the

double arrow from _¢3to _0 labelede4 indicates_hat,if_ holds "long enough7

the, eventuMly siatemen¢ _4 willbe executed and willle_ to s q0-state.INote

that,accordingto the diagram, itisalsopossiblefor m2 to be taken from a szate

satisfying _j, leading to a _2-state.

Single-stepprogressisassured by requiringthat,foreach helpful_ransitlon_"

labelinga double arrow from a node labeled_o,itmust be the case that T isjust,

i.e.,has an associatedweak fairnessrequirement,and that _"isenabled on every

s_ate satisfying _o. An %nhelpful" transition such as m_ from _0s is indicated by a

single arrow.
Given the diagram inFigure 4,the system isable to check allthe _soclated

verificationcondltloRsand establishthe desiredaccessibilityproperty forprogram

PET,

3 Model Checking

Generally spea,king,the model checking problem isto deter.minewhether a given

logicalformula can be satisfiedby some model by exploringthe statespace ofthe

system. In STeP the logicalformul_ is taken to be the program specification,

16



expressed .in (linear-time) temporal logic, and a model is some computation of the

program.
STeP provides an efficient implementation of the mode] checking algorithm de-

scribed in [MPg4b] and originally proposed in [VW86]. We only sketch the algorithm
here.

Given a program _ and a linear-time temporal formula _, the algorithm de-
termines whether there exists a computation of _v that satisfies -_. The approach

is based on automata: the program is represented _ a transition graph, which is
viewed as a generator -4_ of infinite words over the program's state space, and _ is
viewed as an acceptor .4_ of infinite words.

There a_ severaltypesof automataforinfinitewords.In ouralgorithmwe

useStreett_ulx)mataIStr82].A Streettautomaton.4consistsofthe following

components:

s a finitesetofnodesN,

• an initialnodeno:

• a finitesetofedge_E, and

•mn acceptancelis_£ = (Rt,Pl)....,(/_,Pro).Ri C N arecalledrecurrent

nodes and _ C N are called persistent nodes.

An infinite sequenceof automatonnodes,no,n_.... , is acceptedby .4if

• no istheinitialnode of-4,and

• foreveryi- 0,i,...,thereexistsan edgee E E connectingnito hi÷i,and

• forthesetofnodes,Nin1__hatappearinfinitelyoften,foreachi--I.....m,

eitherNin/ N R__ 0,or]Vinj C _.

To representthefairnessrequirementsofP, recurrentedgesareadded tothe

Streettacceptancehst[HSB93].The ac_.eptancelistofthismodifiedStreettau-

toma_on(alsocalledF.xlge/NodeStreettautomaton)isthusa l_toftriplets.£ =
(RI,Px,Ez),...,(Rrn,Pro,Era),whereR_ and Piareasbefore,and Ei C_E isaset

ofrecurrentedges.The acceptanceconditbnofan Edge/Node Streettautomaton

isthesame asaboveexceptforthethirdcondition,whichbecomes

• a_leut oneof_hefollowingholdsforeachi= L...,m:

Nin INRi_.O or A'inI C_PI, or E,inI C. Ei,

whet*.Nin/ is,as before,thesetof nodesthatappearin_nitelyoftenand

Ein/-Isthb._.tofedg_ thatappearinfinitelyoften.

17



When _rans!atin_a fairtransitionsystem intoan F._Ige/NodeStreettautomaton,

each fairtransitionr contributesone triplet(R:..PT,E_) to the Streettacceptance

list.E_ containsalledgeslabeledby _"for both compmssionate _nd justtransitions;

for a just (we_klyfair)tra,nsition,P_ -- 0 and R, containsallnodes labeledby

an _ssertionon which _"isdisabled,whereas for a compassionate (stronglyfair)

transhion these are reversed:/_ - 0 and P_ containsallnodes labeledby an

assert.ionon which I"isdisabled.

In thisrepresentation:showing that 7) satisfiesq reducesto showing that

L(.4_) C_L(,%)

where L(.4_) isthe language generatedby .As (i.e.,the set ofallcomputations of

P), and L(_4_) isthe language accepted by _4_ (i.e..the set of allsequences that

sa|;isfy_). The setinclusiongiven above can be rewrittenas

/.,(4.p)n L(4_) = 0

or alternatively:

• L(,4_,) n Z,(..4.,_) = 0

This c.an also be writtenas

L(B_,._)= 0

where B_,.._representsthe produc_automaton, alsocalledthe behaviorautomaton,

of _4p and A.,_. The nodes of B_,_ are labeledby pairs(s,n),where 8 isan

elementof the statesp_ce ofP and n isa node of A._,.and the edges are labeled

by transitionsof _. The acceptancelistofB_,-,_ isthe union ofthe acceptancelist

of,4_ a_d thatof.A_,.

In the contextof fairtransitionsystems, the automaton B_,,.,__ not empty iff

it contains a fulfdlino 6ubgraph, i.e., a subgraph that _ti_rfies the Streett acceptance
criteria which result from the fulfillment requirements a4mociated with formulas

such as OP and the fairnessrequirementsof _).A subgraph S s_tisfiesthe Street,.

acceptancecriteriaif(I) itisa stronglyconnected component, and (2)either$ N

R_ # ¢, _ C_/_,or there existse e E_ such that e connec_ two nodes in S, for

every i-- I....,m.

Following this approach, the algorithm is given as follows. Given a (linear-time)

temporal formula _, the Streett automaton _4_ is constructed using the algorithm
presented in [KMMP93]. Starting from .A_@ and the transition graph of P, B_.._

isincrementallyconntructed.The algorithm adds a maximal stronglyconnected

component Isfound, and itthen checks whether this component has a fulfilling

subgraph. The algorithm termlnateswhen itfindsa fulfillingsubgraph, or when

itcannot add any new nodes. In the firstcase the correspondingcomputation is

returned as a counterexample. In the lattercase the P-validityof _ ha_ been

e_tablished.

To illustrate,the v.lgorithmwe apply itto program _N_"and the 7).validproperty:

18
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Figure .5: Automaton for (z > 01 W (y = 2).

_: -,((x > 0) _ (_ = 2))

INF has the following transition relations:

l"z: O_<z<3 A z'=z+l

r3 " z r = O A _S= I

TI : Z t : X A y_ : _I

[XF'.z justice set is J = {_'z, r2, _ }.

(idlingtransition)

The aurora,.ton for -_ is shown in Figure 5. Part of Z_F'S (Infnite) transition

graph i_ shown in Figure 6; in this figure, (a, b} stands for the state where z = a, y =

b. The algorithmconstructsthe behaviorautomaton shown is Figure7,which has

threestronglyconnected components: (s0,n,z),(at,r,1),and (u2,nl). None ofthese

are fulfilling:allof them failto satisfythe acceptance tripletoriginatingfrom

transition_'3(Rz = 0, Pz ---_, Es = {edge labeledby ¢3}). Intuitively,none of

thesesubgraphs isfairwith respectto rs: 1"3isenabled infinitelyoften but never

taken. Therefore no computation ofIXl_satisfies(z > O) H2 (y ---2),establishing

the _P-v_lidity of _ : _((: > O) W (y = 2)).

This example illustrates how the mode} checker Lsa.ble to verify a property of

an infinite..s'cate program.

4 Invariant Generation

A large class of invarian1_ can be generated automgtically by' STeP to simplify'

the verification process. Each of the invariant generation t_._hniques can be loosely
classified a_ bottom-up or topdou, n, In the bottom-up approach only the program

isconsidered:inductivea_sertionsare deduced from zhe program E.tructure.The
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Figure 6: Part of the state transition graph.

Figure 7: Behavior _utom_ton.
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top-down approach isgoal-directed:itconsidersthe proper_'that has to be proven

and strengthenssome ofitspartsto produce an inductiveassertion.

4.1 Bottom Up: Local Inv_rlants

Localinvariantsare bottom-up invarian_swhich relateprogram controlpredicatesto

u_r_ions involvingdata _,_triables.The system usesseveralheuristicsforgenerating

localinwriants.An important concept in thiscontextisownership of variable_:

variabley isowned by a statement _ ]fno transitionparallelto_ modi_es _/.

Reaffirmed Invariants

The simplesttype ofbottom-up inductiveassertions_rethosewhich areguaranteed

to hoM afwr executionof each transitionthat interfereswith them, without any

_umption about the ssatebeforethe execution.

For example, a reaf_rmedinvariantcan bededuced inthecasewhere a transition

setsa variable_ to a constantexpressionc:

LI: _:=c _:

|fy isowned by _ we may conc!udethe inductlvenessof

i.e.,when controlisat t2 the valueofy isc.Similarly,in the follow_ngexample_ if

//isowned by _2,and cIand c2 are constantexpreaslons,then from

_1: ;f c then y :: cl else I/:: c2 _2:

we can conclude that

isan inductiveinvariant.

Another example of a reaffirmed[nv_riantisifa location_ in the program is

reachableonly a_ a resultofa test_. Insuch a case we know that when the location

isfirstenteredthe _estisvalid.Ifallvariablesappearing in the testare owned by
we can conclude

For example, ifa_l_riables inc areowned by _, then from

20: await c _:

we may di_:_[y|nferthe invar_ant:
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Similarly from

10: _while ¢ do $] t_:

we can infer

if all _riables in c are owned by £t. Similar invariants can be generated for when
sta,tements and condJ.tional statements.

If the possible value$ of a data va_iabie are known for every program location.

one can rcverse, the implic_,.ions. For _xample, if it is known that

at.to -_ yfe_

at-_,2 _ _/=¢2V_/=c3

at._3 -'>. _t= c3

where ee, 21, £2, and _z cover the r_nge of possible program loc_ions, then, if cl, c2

and c_ ars distinct, one may infer:

= c_ _ at.._o

y = c2 -_ at.£_.2

y = c3 -_ at.iZL.3

Range Invariants

Even if it is not po_ib[e to determine the exact va_ue of a data _ri_ble at a

given location, it is sometim_ possible to determine the range from which the
data variable takes its values, if tha.t variable is modified only in a restricted and

predictable way. R_nge invariants are of the form:

at__ --* l < y < u

For instance, for the program rtES-,_EM, shown in Figure 8, STeP generate_ the
range _nvari_nt

Invarlants of Parameterized Programs

Parameterized programs often contain array variables z such that no single state-

ment or process owns z. However if z[i] is modified only by P[i], invariants like

those described above can still be generated. Consider, for example, program oa-
Do.a, shown in Figure 9. It grants each proce_ access to its critictl section in

the order of its process sequence number. For this p_ogram STeP generates the
following local invariants:

x,:

22
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local M, _ : integer where y = 1

M

_o: IJp[i] ::

l?:

f, : loop forever do

[_: noncritical"
1_3: request y
Ig4: critical
Lgs: release y

is:

Figure8:Program RSS-SE._I(resource_llocationby semapho.,_).

X_I..N]. (ati3[i]-_ a[i]> i)

N

II P[i] ::
iml

N : integer where N > 0
a : array [I..N] of Intepr where Vi : [I..N i. a[i] = I
y : array [1..N] of boolean where Yi : [1..N]. -.y[i]

"to: while a[i] < i do

"['g:="[']+ q
g3: critical
&: t,[i]:= _"
6:

Figure9:ProgramORDER

The localinvariantsX2 and X3 areexamplesofreaffirmedinvariants,and )_t

istheconjunctionofa reaffirmedinvariantand a reverseimplication.Usingthese

invariants,theproofofmutualexclusionforprogramORDER, expressedby

vi,j:i< .i:[I...¥].-l-,(atd3[i]̂ _t-_4j])

isautomatic.
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4.2 Bottom Up: Linear lnvariants

A linear invariant is a linear arithmetic relation involving program variables and

program control states. A typical linear invarlant, for instance, is given by:

at-£0.2 ÷//I -- 1

where at 20.2 stands for at.go V at 2t V at 22. Yo_e that boolean expressions are

converted to iRtegere by taking T to be ! and F to be O.

Linear in_riant_can also be generated for parameterizei programs, where each

control predicate can be generalized to reprint the number of processes at chat

controlpoint,e.g., N(at.f.o.._)ratherthan at._o..2.

Let P be a program, representedas a transitionsystem with setof transitions

7"and initialconditionO. A setofvariablesYt,....I/=islinearift.heeffectofeach

transition r E 7" can be expressed as

= +

where ¢_"and c_kare constantezpre86ions,i.e.,expressionswhose variablesare not
modified by any transitionof7).Thus, each variableI/#ismodifiedonly by a linear

combination ofotherlinearvariablesand constants.

Given a set oflinearvariablesYz...._/,,_and controllocationsit,...:£n,a linear

invarian_ is an equation of the form:

ttt tt

x: ÷ t¢
iml jml

where a_ and 6._ are constan'c expressions and K is a constant. The values of al and

b_ are determined by solvingthe system of linearequations that resultsfrom the

requirements for aa i_ductive invariant, i.e.,

• X is implied by the initial condition e. which translates into

_ai,y ° + __.b_.N(at2j °) = r
tat jml

where po denotes the initialvalues of _tiand N(at._#°) denotes the initial

number of processesat e,_,and

• X ispreservedby each transition_-_ 7",which,foreach _"6 7-translatesinto

t/t tt

,,,.AC,, + = o
i=l $'ffil

where A(_',Vi ) iS the increment in Yi due to r and A(_', N(at._#)) denotes the

increase or decrease in the number of procesa_, at _i due to _'.
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STeP constructs invariants based on a maximal set of linearly independent solu-

tions (if the resulting system of linear equations is not independent, there is no

unique solution). As an example, consider program as._-sz._t, which was p_e_ented

in Figure 8. The only' linear variable is y, so linear invariants for RZS-SSM are of
the form: _

?

.7=0

Imposing the,invariancerequirementsresultsinthe followingsystem ofequations:

0 : a+bafK

1"o : -bo + M . bz = O
r_ : -b_ + b= = O

rf : -bl + bo ffi O
r2 : -b_ + b3 ffi O

I"3 : -a - bs + b4 ffi O

1"4 : -b 4 "l" b5 = 0

rs : a - bs + b2 -- O
ra : - M "b6 + bT - O

from which STeP constructs,among others,the followinginvariant:

V+ A'(at._) + N(atY.s) = I.

In conjunction with the local invariant y > O, this is sufficient for establishing
mutual exclusion for program a_s-ssM.

4.8 Top-down: Strengthening

Top-down in_riants, i.e., strengthened invariants, are generated in STeP by in-

variant propagation. Suppo_ STeP is given a, propo_d invariant V to be proven.

The system ]irst generates bottom-up inva:iants and checks whether t5 is induc-

t.iverel=ttiveto the conjunctionofallbottom-up ]nvariants.Ifthisisnot the caae,

i.e.,_ cannot be proven,the next stepistostrengthen¢ ba=ed on the verification

conditiom;thatcould not be proven.

Suppose that tb is a proposed invariant. Given a transition r for which the
verificationcondition

cannot be proven, the system automatically computes the weak_t precondition

wpc (¢, r) of _) with respect to r, i.e., the weakest assertion 7 that guarantees _v is

true when r is taken from a state that satisfies % The strengthened invariant is
then taken to be:

aStrictly sp,mJcing, M i= also • Linear vaxiabl¢, but since it is recolg_J_d to be a coast&at.

expression and, M such, does not contributc-a.nything tl_eftd to a linear ilw4uriant, it i$ cxch_ded.
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Consider.forexample, the proofofmutual exclusion,expressedby the invariant

for program FZT, presentedtnSection2. ,_isnot inductive,since

isnot validfor r - _4. STeP automaticallycomputes the weakest preconditionof

G, yielding

T at.ms

which simplifies to

Similarly for m4:

41: ate4 A a_-m5 --}_12A s_ 2

_2" at_s A at.m4 _ Yl A s ,_i

The conjunctionofthe proposed inv_ri_t _nd the weakest preconditions,

_: t_"A t"t A V'2

isinductiveand allverificationconditionsare establishedautomatically.

I"osummarize inv_riantgeneration,considerprogram eEr once more. Inorder

to prove mutual exclusion

_ME: -_(at.e5A at.ms)

STeP automaticallygeneratesthe followinginvariant_:

range 1 _<s _<2

local f Yl _ at_3..e

/ ltz _ at.rns.._

strengthening { at.�.4 A at.ms -_ t12 A 8 g 2at.g.s A at-m4 _ Yl A 8 _ ]

and, using these invari__gants,automatically establishes all verification conditions.
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5 Theorem-proving support

Effective verification requires effective theorem-proving, in order to free th_ _ser

from the many tedious low-level details of a formal proof, in STEP, most of the
verificationconditionsthat need to be proved fortypicalsystems are trivial.Hove-

ever,automating the processof proving them requiresthe integrationof a large

_arietyoftools,which we now brieflydescribe.

5.1 Simplification

_Iost of the automated theorem-proving in STeP is done by a very general but

ei_cient,rewritingmechanism: which we callthe simplifier.Itcan be bestdescribed

as _ form of contextualrev._itin9(s generalizationof conditionalrewriting,see

_Zh_L93!)that incorporatesa number of specializedfeaturesthat we have found

usefulfordealingwith the formulasthat commonly occur inverificationconditions.

Thus, the contextualrewritingincl',des:

• A form of non-clausalpropositionalsimplificationthat can, for instance,sim-

plifya sentenceofthe form

,zAe,^ (dvc) _ (a^ d)v (cA I)

to

aAbAc --.t dv f

s Opportunisticreasoningabout the interactionofequalitiesand quantification.

For example,

CVx)[_= I ^ p(_)-, z = 2 v qCz)]

simplifies to:

pO) -_ q(l)

viaspecialstrategiesforquantisers.

Rewrite rules(conditionaland unconditional)forinterpretedfunctionsym-

bols. These are usefulfor simplifyingterms involvingllstsand arrays;for

instance,rewriting

contents(assign(Ar_:ayL!t,z), 1;)

tO Z.

Furthermore,the simplifierreliesheavilyon congrucr,c_ closure [NO80] forrea-

soning about equalityand uninterpretedfunctionsymbols. Congruence clo_ureis

alsotightlyintegratedwith a decisionprocedureforinequalitiesover totallyordered
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domains..The combined decision procedure worka in polynomial time in most praco

tic_ cases and is an attractive alternative to the more general, but more expensive

Sul>Infprocedure describedbelow.As a result,forexample,

f(x)=_A_<zAz<x _ l(x)<z

simplifies to true.

Integrating all of the above features into a single rewriting procedure results in
an extremely" effective tool. For instance, it will promptly rewrite

(f(._) _< ,Z) A (.q(_) > y) A V _ (.z _ y)

p(_r) < f(y)

to |rue.

5.2 Decision Procedures

By decisionprocedurewe mean an algorithmthatcan decidethe validityor satisfia-

bilityofa classofformu]a.sina giventheory,and always terminate_with a positive

or negativeanswer. Decision proceduresfor a [Oven theory may vary dependi_tg

on theirdegree of completeness (i.e.,which formulas they can decide)and their

complexity,which are traded o_"againsteach other.

Two decisionproceduresfor Presburger arithmeticare availaMe3. The firstis

based on the Sup.lnJmetho_ [Ble75]which ei_cientlydecidesa subeetofthe theory;

the other isan implementation ofCooper's algorithm [Coo72],which i_a decision

procedure for the entire theory.

The Sup-lnf method is complete for rational quantifier-free Presburger arith-

metic, and can be extended to handle uninterpretedfunctionsymbols [$ho79].Al-

though it is incomplete ifvariablesare requiredto be integer-valuedand itscom-

plexityisexponential,the Sup-Irfmethod oftenworks wellinpractice.With itone

can decide,forexample, that the formula

z_(I/-l-z) A(z__z) A(l/=0) _ f(z)=f(z)

should simplifyto t_Je.C_oper's algorithmcan decidethe fullPresburger theory

overthe integers(withoutfunctionsymbols),hut isofsuper-exponentialcomplexity.

Itcan establmh the validityofsentencessuch as

W V_ _2 ((x + z) > _).

Despite the f_t _h_t Sup-Inf is incomplete for the integer fragment of Presburger

arithmetic,we have found that STeP ha_ been _bleto prove most ofthe verification

conditionsthat ariseinpracticeusingonly Sup-lnfand the slmpli_er.

aPresb_r|_ f¢_rmul_ sre_fi_t-order forrnu]*_ over ince|el_, intel_r variables, _ddi_ion and <,
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For d_iding th_ validity of propositional formulas with small clausa} form_,
an efl/cient implementation of the classic Davis-Putnam procedure (_ZS94:) can be
used. A decision procedure check the validity of propositional temporal logic
formula_is alsoprovided [KMMP93].

We Shouldnotethatwhiletheproblemofeffectivelyand ei_icientlyintegrating

differentdecisionprocedureshms commanded much attentionovertheyears(e.g.,

[NO79,BM88b]),we havenot yet implementedthe more generalmethods. We

considerthistobe a promisinglirectionforfutureresearchand implementation.

5.8 First-orderProver

As pointedout inSection5.L thecontextualrewritingmechanismcan perform

s_.mplereasoningaboutquantifiersand equ_lit.v.However,more complexreasoning

involvingunificationisoftenneededtoprovethevalidityofcertainfrst-orderfor-
mulmsthatariseinverification.Such theoremsare.seldom"deep,"and can often

be provedby applyinga few mechanicalinferenceruleswithverylittleheuristic

guidance.

A _heoremproverbasedon non-clausalresolutionand paramodulation[.MWO$]
isavailableasa semi-decisionprocedureforthefullfirst-orderpredicatecalculus

with equality, automated in _ style similar to the SNARK [SWL+94] and OTTF.R

[McC94] provers: the search is agendaoba_ed, term-indexing is used for efficient
tlemodulationa_d subsumption,and paramodulationisrestrictedby a recursive

pathorderingon terms.Thisprover_Isousesthe basicsimplificationprocedures

describedabove.Previouslyprovenin_ariantscanbe useda_[emmasbythisprover.

5.4 Interactive Prover

Becauseoftheirworst-ca_complexity,themore powerfuldecisionproceduresneed

to be appliedit'.a controlledfa6hion.Consequently,theyarenotincludedin the

main simplifier,whichisautomaticallyinvokedquiteoften,and must thereforebe

feint.Insteadtheyareleftfortherisertoinvokeinteractlvely.

Inadditiontocontrollingtheapplicationofdecisionprocedures,theinteraction

_Isoprovidestoolsforprovingthev_lidityofformula8intheundecidablesettings
ofcla_icMand temporLlfret-orderlogic.

Thisinteractionismanaged throughaGentzen-stylefirst-orderprover(seee.g.,

[Ga187]),whichi_guidedby theuser.Subgoalsin a proofcan be establishedvia

s_mpliflcation,decisionprocedures,automaticpropoeitlonaltemporalproof-search.
or resolution.The overallproofsearchisdirectedby theuser,who decideswhich

inference rules and decision procedures a=e applied to any given goal.
We also support a Gentzen-style first-order temporal prover, which can verify

propositionalteml_ra!Icr_icformulemautomatically;traditionalGentzen-$tyleproof
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rules are supported, as well as tempor_] rules such as:

(_n) r_-A,_ _,r_-A.OD_ (_.) r._,O_-A
r _- _A,D_ r,_ i- ,x

Proofsearchproceedsina bottom-upm_nner:from thegoalbelowthe llne,the

s_,archproceedstothenew subgoalsabovetheline.

6 Examples

6.1 N-Process Dining Philosophers Program

Dijkstra'sdiningphLlosophersproblemdescribesN philosophers,whose onlya_tiv-

itiesinlifeareeating_nd thinking.The philosopherseat onlyrice,and forthis

purposeneedtwo chopstickseach.Unfortunately,theirrounddiningtableisonly

equippedwithN chopsticks.Thisexcludesadjacentphilosophersfromeatingsi-
multaneously.

A solutiontothediningphilosophersproblemisgiveninFigure10.In program

I)LxE,cl_opsticksareacquiredviathebinarysemaphorevariablesc[l],....c!N],and
de,lock (thepossibilitythateveryphilosopherpicksup hisleftcho1_ticka_the

same time)ispreventedby the semaphorevariabler,havinginitialvalueN - I.

One may interpretrasadoorbetweenthelibraryand thedininghall,onlyallowing
a_most .¥- i philo_phersintothed_ninghall.

in

local

_V

IIP['] :"
i=I

N : integer where N > 2
c : array [1..A_ of integer where W : [1..A']. c[i] = 1
r : [ntegr_r where r -- N - 1

"_0: loop forever do ]

'1: noncritical ]|
_=: request r //

l,: robustd('=od:_)+ 1]//
l_: .,tieni //
_e:r._--o _li] , //
l_- releued(i=od_)+ 1]//
_s: releaser JJ

Figure 10: Program DINE (Dining Philosophers)

M,_tual exclusion, stated as

_-,(a_._[_] ^ a¢._[(_rood_')+ 1]),

3O
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follows from the invariants:

xt: c[_]>_0

X2: at2$..7[i] + at._4..s[(i mod N) -,- l] -' c[(imodN)+ 1] -- 1

The lnvariant _(_ L_generated as a bottom-up invariant, while _2 is generated by

the strengthening heuristics. Twelve verificatLon ,:onditions need to be proven to

establish the inductiveness d X2, all of which are proven automatically.

6.2 Szymanski's N-Process Mutual Exclusion Algorithm

The system has aLso been applied to prove mutual] exclusion for Szymanski's mu-

tuaJ exclusion algorithm [$zy88], wMch is a symmetrLc psrameterized program that
provides mutual exclusion for an arbitrary number of processes. In [MPg01 and

[MP91c], several temporal proof techniques were applied to prove some props:ties
of this program. The safety property, mutual exclusion, was also formally verified

in [_'T91] using the Boyer-.Moore prover [BM88a 1. We discuss here a more recent

version [SV94] of Szyrnanski's algorithm. We actually verified a slightly modified

program from the one in l:he prepublished version of ISV94]. Oar version is written
in SeL and corrected to zvoid deadlock.

Szymaasld's mutual exclusion algorithm is available in two versions. The short-

eat, and most abstract, is the atomic version, which allows quantification over pa-
rameterized variables in test statements; these tests are treated as atomic constructs.

The more refined molecular version replaces tests that involve quantified formulas

with mote primitive program constructs. The two versions are presented in Pig-
urea 11. and 19, respectively.

The atomic veraion

The atomic version of Szymanski's mutual exclusion algorithm is shown in Figure 11,
which identifies three puts: the doort_ay, the tmiting room and the inner aanctum.

The variables a, 8 and w may be given the following interpretation: a[i], a[i] and w[(]
indicate whether process i has requested access to the critical section, ha_ entered

through the doorway end is not in the waiting room, or is in _he waiting room,
respectively. The quantised tests in t3, £s, £7, £te and £tl, which are considered

atomic, can be seen as gate, between the different stages. Proce._u_ can only pass
£3 if there ate no processes in the doorway or in the inner sanctum. However, as

long as procesee, are waiting at e3, all processes that enter are redirected to the

w_ir_ing room, opening £3 _ain. The Iwt process that pa_es through la locks _a

behind it _nd then bypaes_ the w_iting room, thereby opening the g_te e_ each that

the waiting processes can come out of the waiting room. At this point e3 remains
locked un*.il all processes inside the doorway have passed the critical section. Gate

£10 is opened when all processes have left the waiting room. Gate _li allows the
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processesthatareinside_hedoorw_.vaccesstothecriticalsection,oneby one,and

inorderofprocessnumber.

|D

local

N

II p[i]::

N : integer where N _> 1
a : array [I..N] of boolean where Vi : [1..N]._a[i]
s : array [I..N] of boolean where Yi : [I..N],-_s[i]
w : array [1..N] of boolean where Vi : [l..N].-_w[i]

loop forever do
noncritical

_[i]:= r
awaitvj:[l..,V].-,sfj]

d_rwaV

(will,d*_):=('r,T)
waiting room

e5: if3j :[I..N].(a[j] A "_w[j]) then

_[ie: '(i]:=F ]
t_: await 3_ : C1.._'1.(8_]̂ ,w_])

: 4,_:=r
inner sanctum

eg: _di] :=
el,0: await Vj : [1..N]. "_w_]
en: await vj : [1..(i- 1)]. -,_f_]
ga_: critical
.e_s:C_[_,a[_]):=(r,r)

Figureii:Program SZY-A (Szymanski'salgotighm:atomicversion).

ThisprocedureisreflectedinthefollowingfourInvxrlants,

Ao : at.Q..13[i] _ -,at.e4fk]

Aa : at.g$[i] _ ]k :[1..N]. at.eao[k]

A2 : at-ell.a3[i] "# _at d4.._[k]

As : at-_zr,t3[_ ^ k < i _ -,at.t4,.|z[k]

whichrs_:ablishmutualexclueion.Theseinvariantsmay be interpreteda.sfollows:

* .4o:oncea processi hasenteredthe innersanctum,ghedoorwayislocked,
i.e.,no processk may be at.Q.
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• Al: if a process is about to leave tl'._ewaiting room, there is already a process
k in the beginning of the inner sanctum.

• ,42: once a process is in the latter pa:t of the inner sanctum, there is no
process k in the waiting room or in the doorway.

• As: if a process is in the critical section, there is no other proce_ with a
smaller index in the doorway, waiting room or inner sanctum.

The inductive invariant As is establishedusing the conjunction of Ao, A1, and As,
where As implies mutual exclusion:

DCatdt=[i] A at-_2n[j] .-* i = j)

Bottom.up invariants play a crucial role in establishing _he auxiliary invariants.
For exa.mple, the system generates the local invariants

at-ts.s.9..ts[i] s[i]

at2s..t3[i]

a-es,[i]

which are used to establish A0, Aa,A_ and As. Of the 69 required verification
conditions, 54 were established automatically. The remainder required short sessions
using our in_ractive prover.

The molecular version

Statements such a,

await -:J': [t..N]. (_] ^ _'_])

involve quantitiers over every process and are not usually available _ _tomic prim-

itives. Therefore, we must refine the quantifiers to available programming language
constructs. Typically, s_.tements like the one above e_n be refined into loops, e.g.:

j:-- 1

while -,s[j] v w._] do
:= (j roodh') + 1

and similarly for univemfl quantiflers. The refined program is shown in Figure 12.
Along with t,he refinement of the program, we must aLto refine the invariants

we expect to hold. The invariants A0, At, A2 and As from the atomic ca_e are thus
refined into:
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in

local
N : integer where N _> 1
a :array [1..N] of boolean where Vi : [I..N]. -a[i]

: array [1..N] of boolean where Vi : [1..N]. -s[i]
w : array [1..N i of boolean where Vi : [1..,%'].-w[i_

N

II _ ::
iml

loop forever do
"local j : integer
el: noncrkical
e2: (4*],J) :ffi(T,1)
13: while j < N do

_4: when -,s[j] do
_s: j:--j+1

doorum9
&: (¢['J,*[_,J):= (r.'r, Z)

-- waitin9 room-
6: while j < N do

s: if a[3"]A --,w[j] then
F_,:_[i]:-F ]
]_,o:wlale -,eL_]v _0L_]do /
| _n:/:=_modN)+l|
Len:(._,4i]) := (N + 1,_) ]

he tn: j :=._+ 1
inner aanctum

et4:(w[,1,j):--"(F,1)
e,_: while j < N do

et0: when ",w_] do
err: j := j + 1

lts: 3":= _.
lm: while j < i do

£20: when -_8_] do
e2,:j := j+ 1

'22:critical

.123:(4%a[,:]):=(_,_)

Figure 12: Program 5zY-M (Szyman.,ki's algorithm: mohculzr version).
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v
V

at.e_4..=a[i] )at._,,_i] ^/[( > k
_t&3_q ^ j[i] >_k

-,. :[1...¥].
(,=iv,i.e,..2,(4))

,', (at.ea.dN --+ilk] < ,-)
^ (,_t..es[k]_ j[k] < ,,)

._4"1 • ,,_.e_s.=s[k]A)!k] <_i '_a_..e_2[i]+ 3k:[I...'¢]. v ,2t.*_.[,_]^./{k!< i /

at&s.aa[i] )Ma : v ,,t&aadi] ^J[i] > k -_ _at.6..,4[k_
v ,,t.t,d,2 ^ _[{ _>k

at.&a,as[i] )M3 : k < i A V at-glg._o[i]Aj[i] > k -4 -at-_7.._3[k]

v at_2_[i]^j[i] > k

1'helocalvariablej isrepresentedas an &tray indexed over_he para_met_erized

processes.The invariantM_, likeA3, impliesmutual exclusionat_he criticalsection.

VerificationofmutuM exclusionforthe molecularversionrequiredproving129

verificationconditions,99 ofwhich were establishedautomaticallyby thesimplifier.

The restwere established,usingthe interactiveprover.

The refinementof the invaxRm_ ofthe atomic algorithmintothe invariantsof

the molecular algotRhm was nontrivial.The molt dii_cultpart was refining.4o

intoM0. The interactiveprover proved to be usefulas a designtoolin thisca,e.

When an incorrectinv,_tiantwas presentedto the interactiveprover,the invalid

verificationcondRions oftengave valuableinsightintohow tocorrecttheerroneous

program _ssertion.

6.8 Distributed N-way Arbiter Circuit

As a finalex_tmple,we considerthe high-levelspecificationof a distributedA'.way

_rbitercircuitAltlt,originallyproposed by Martin [Mar85] and studiedin[Di188].

The proposed p_rametrizedcircuitmanages mutual exclusionbetween N users

having accessto _ shared resource. The circuitiscomposed of N trbiterceils
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Figure 13: DistributedN-way arbitercircuitARB.

connected in_Lcir:_larpattern.Each userisconnected toa cellofthe arbiter,and

thereisa.singletokenthatcirculatssamong the cells:whenever a cellhas the token,

the correspondingusercan be gran_i accessto the shared resource.

A cellcan recelverequestsboth from the userand from the cellto the right.If

ithu the token and rec.eivma requestfrom the user,the celldestroysthe token

and grants access_othe user;the tokenreappears when the userreleases the shared

resource.Ifa cellhms the token a_d receivesa requestfrom the cellto the right,it

pintoesthe token tothe requestingcell.Ifboth requestsoccur at the same time,the

cellnondeterministicallychooses which one to _tisfy. Ifa cellreceivesa request

but neitherthe cellnor itsuser hM the token,the cellforwards the requestto the

cellto the left,and wMts forthe token.

The cellsand the userscommunicate usingafour-phaseuynchronous handshake

prot.ocolbased on requestand acknowledge signals.The connectionsbetween the

usersand the cellsam depic_d in Figure13."fhesignalsraand asrepresentrequests

and acknowledges.betweencells,the signatsr, a,nd a_,representuser requestsand

acknowlsdgm, and t representsthe token.
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time
I
!

ru[i] i ,
I
!

a,,[i]

, n0ncritical

i

request

I
!
!

i
: critiQal

!
!
I

mgN_o

!
I
!release ,

Figure 14: Four-pha_ handshake protocol between user i and ceil i, 0 < i < N.

!received ,

Figure 15: Four-pha_e handshake protocol between cell i and cell (i - 1)rood N,
O<i<N.
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The protoco! between user i and the corresponding cell i, 0 <_ i < N, is shown in

Figure 14. Initially, both r_i] and auii] are F. When the user wishes to access the
shared resource, it sere r.!i] to T. If the arbiter cell has the token, it responds to the

requestby settingau[I]toT and destroyingthe.token.When the userreleasesthe

shared resource,itsetsr_[s_to F, and the arbitercellacknowledgesthisby'setting

a_i] to F and recreatingthe token.

The protocolbetween celli and cell(/- 1)mod 2V,0 <_ i < .W'_isshown in

Figure 15. Initially,both rcii]and ac[s]are F. Cell i can requestthe token by"

settingr,[i]toT. Ifcell(i- 1)mod N has the token,itcan respond to the request

by destroyingthe token and settinga_[_ to T. Celli then a_:quiresthe token and

acknowledgesthisby settingrc[i]to F. Finally,cell(_- 1)mod N setsac[s_to F.4

The high-levelbehavior of the circuithas been encoded in $PL as shown in

Figure 16s.

Mutual Exclusion

The mutual exclusionproperty"forARB can be statedas:

: (,,b] ^'a Ikl-*#= k).

This property is established with the help of the auxiliary invariant,

[o...,v- v
A

statingthat at any giventime thereIsexactlyone cellthat eitherhas the token or

isgrantingthe userae.ce_to the resource.To prove thisisvafiant,STeP automat-

icallyten.crates12 verificationconditions,which can be establishedwith the usual

combination of automatic aad interactive theorem proving.

Absence of Unsolicited .Requests

Another desirableproperty of the arbitercircuitisthat a cellshould not £equest

the token,unless

1.itisreceivinga requestfrom the useror from the cellto the right,and

2. the celldoes not have the token,nor itisgrantingaccesstothe sharedresource.

_[n this model, the token iimult_neo_ly d_stppemm from cell (i - l)mod A' sad reappears in

cell i. _s is consiJcent with the model presented in [Di188].

6This pro_prmrn is sl_[htly _i_erent from the model pr_mtt'd in [Di1_]: when an e,rbitcr cell

receives • request 6tom it8 celt to the right it ¢he.cks th_ i_ u_r is not scctlJing the rt_o_¢e before

forwatrd_nj the recltlest, while it doe_ not in Dill's model.
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in

local

I[
i=O

N : integer where N > !
r_ : array [O,.N-I] of boolean where Vi : :O..N-1].-_rc[i]
ac : array [O..N-I]of boolean where Vi : [O..N-l].-_ac[,]
v,, : array [0..N-l] of boolean where '¢i : [0..N-1].-r_,[i]
au : array [0,.N-l] of boolean where Vi : [0..N-1].-a,[i]
t :array [0..N-l] of boolean where Vi : [0.,N-l].t[i] _ i = 0

"loop forever do

or

[/=: guard fuji] A a,,[i] do fuji] := P]
or

it,: guard rdi] ^-.adi_ ^ t[i]do (t[i],a,,[i]):= (F, T)]
or

or

l
or

/e :

or

or

Is :

guard ",ru[i] .'_au[i_ do (t[i],adi]):= (T, F)]

guard-r.I,_̂_o:til̂ -,1 ^ _ail ) ]1
A V

rd(I + 1)rood ._']A -,a°[(i+ 1)rood N!
do rdl] := "r

guard -_r,[(i + 1)rood N] A ac_(i + 1)rood NIl
do at[(/+1)rood N] := F J

guard r,[(i + 1)rood N] A "_a=[(i + 1)rood N] A t[,]

( '" 1do t[(i + 1)rood N] :=

ae[({+ 1)rood :V] T

Figure 16: High-level SPL encoding of ARe.
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This property is not e_sential for mutual exclusion: but it contribute_ to the effi-

ciency of the design. It is expressed by the temporM logic formula:

0 vj : [o..N-1].

^ -+ ^ ^ '_b]
-,aob'] -,a_J

This invariant can also be proved by STEP.

( lA
-_ac[Cj + 1)rood N]

T Conclusions

Despite the fact that STeP is still _t an early stage of development, it has already

proved useful in underslmnding and debugging complex programs. For instance,
the system helped identify an error in the mutual exclusion aJgcrithm from a draft

version of [SV94] that allowed the possibility of deadlock.
Although STeP is founded oR the deductive methodology of Manna and Pnueli

_.,/P94b].. its development ha_ been inspir._d by a large body of related work in

formal verification, suck _ the PVS [SOR95] and SMV [BCMDgO] systems, rep-
resenting the deductive and model-checking approaches, respectively. Other recent

approaches to combining model checking and deduction include [Hun93] and [I.<L93],
where model checking is used to verify local properties of a system, which are then

combined to prove globLl properties using deductive techniques.
The system presented in this paper reflect* six months of implementation effort.

Obviously there are many areas that need to be improved _md completed. Major

extensions that are being worked on include:

• Increased flexibility of ve_ficat, ion diagrams;

• Inclusion of refinement verification rules _K.MP94];

• Tighter integration of decision procedures, including more sophisticated constraint-

_olving techniques;

• Incorporation of decomposition, following the _echniques described in [Cha93];

, Providing better debugging| facilities;

• Connection of other _ystems t_ STeP (e.g., symbolic computa.tion system_

like Mathematica to support hybrid systems).

• Addition of _he _bility to handle real-time and hybrid systems.
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